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ABSTRACT

Over the last several decades, engincers at the Jet Propulsion Laboratory have developed a vast
array of analytical tools to design missions to Farth orbit, the moon, sun, plancts and various
other bodics in our solar system, and beyond.  Duc in part to the unique objectives and
requirements of cach new mission, many carly tools were dcveloped in an ad-hoc environment to
support the. immediate needs of specific projects, withlittle thought given to developing an overall
system architecture, maintchance, 01 reuse by subscequent projects.  Nonetheless, the tools that
emerged beganto representarich heritage 01 mission design experience and capability.

In rc.cent years, advancesincomputerhardwiaie, modern pr()g]'mmning languages, and the need
for faster and more cost efficient operations for small missions have highlighted the need o
streamline, consolidate, and gencralize JP1. s mission planning software. Realizing this, 111’
Multi-mission Ground Systems Office and Project Design Center have jointly undertaken the task
of transforming existing “legacy”  software info an integrated, general purpose, multi-mission
ool Set.

This paper summarizes ongoing, efforts at IP1. to re-engineer the mission analysis segment of the
mission planning ground system architecture.  Issues addressed include: developing a partnerstiap
between software developers and users, developing a consensus based architecture, evolutionary
change versus revolutionary replacement, reusability, and minimizing future maintenance costs.
The status and goals of new developments are discussed, and specific examples of cost savings
and improved productivity are provided.

The work de.scribed in this abstract was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under contract to the National Acronautics and Space Administration.

1. HISTORICAL , OVERVIEW

In keeping with JPL's charter to explore the solar system, a varicly of miss jons have been
I wunched to various locations including Farth orbit, the moon, [lie plancts, heliocentric obit, and to
small bodies such as comets and asteroids. Mission objectives have included initial {lyby
reconnaissance, detailed orbital mapping, satellite 10U s and surface landings to name a few. Until
recently, activities have centered on a relatively small "mber of unique, first-of-a-kind projects,
and most of the mission analysis software was created on an as needed basis by mission desig
engincersto solve. thei immediate problems. Because of the unique nature of cach mission, little
thought was given to reuse by subsequent projects. After all, how often Was NASA likely to send
a Viking style. lander to a planct's surface, conduct a "grand tow” o f  the solar system like
Voyagers 1 and 2, o1 explore an outer planet gas giant and iv's moons like Galilco?

Computer Systems have also changed greatly over the years.  Before switching to mostly UNIX
based systems, engincers developed and used software on carly platforms such as the 1BM 7044,
7094 and finally Univac mai nframes. By comparison to modern engineering, workstations, these
carlict systems were much more difficultand costly touse.  Frequently, the charges for computer
time could greatly exceed the engincering, labortittes. As aresult, the mission analysis software




that emerged favored minimizing computer run time for both development and operations, at the
expense of case of use, reusability, and therefore engincering Tabor charges.

2. CURRENT ENVIRONMENT

In the carly 1990's JPL's Multi-mission Ground Systems Office (MGSO) bepgan the Multi-mission
Software Transition Project (MSTP) to port Univac based software to Sun aitd Hewlett Packard
engineering workstations. The intent of the effort was to preserve much of the legacy software
developed by prior projects for use by future missions as the laboratory made the transition from
mainframes to micro computers.  As work progressed i the mission planning arca, it became

welear that much of the mission analysis software being ported would not be dircetly usable by
other missions. Yor example, some software developed for use by the Galileo project to Jupiter
and its moons presupposed that the mission was in orbit around Jupiter, and that the spacecrafl
would fly by the four Galilean satellites. 1t also modeled the orbits of the Galilcan moons as
perfectly circular, with no inclination with respeet o Jupiter's equator.  Clearly, this software was
developed under the assumption that saving computing cycles was more important than obtaining
a high fidelity result, or to be useful to any subsequent project. Realizing these shortcomings, the
task objectives expanded to make the software as applicable to other missions as reasonably
possible. This included general features such as making the central body for spacecraft orbits a
user input, and causing programs to access standard planctary and satellite ephemerides for the
bodies of interest instead of using a hard wired approach.

Other forces were at work during the carly 1990's as well. NASA's out ycar budgets began to
show increasing reductions, and it became clear that the days of costly "flagship” missions were
over.  IPL, management  repeatedly  communicated  the top level direction from NASA
Headquarters to the work force: conduct missions that are faster, better, and cheaper, Therefore,
the emphasis switched to performing a larger number of smaller, less expensive misstons. This
further highlighted the need to create an institutionally supported, multi-mission software base,
since it was clear that the many small missions would not have sufficient time or money (o
develop their own tools. Perhaps more importantly, the tools would need to be casier o usc,
theteby allowing project analysts 1o spend  their resouyees designing @ nmission rather than
strugeling with difficult, uncoordinated, and crror prone software. By addressig the problem in
this Hight, it became evident that improving case of use satisfied "faster”, integrating applications
and streamlining information flow to reduce errors meamt"b etier”, and the combinati on of saving
time and reducing. ¢ rors inherently satistied "che aper”. ‘

3 FORMING PARTNERSHIPS - [1 SERS.DEVELOPERS, MANAGERS, SPONSORS

As the MS'T effort to, port software from the Univac to UNIX systems neared completion, the
budgetary and technical considerations oullined in the preceding sections became increasingly
clear. Users and developers of mission analysis software had long known that the system needed
to be re-engineered, but the MST cffort funded by the Multi-mission Ground Systems Office
helped to bring the issues to the forefront.  As a "grass roots" initiative, a special meeting of the
Mission Design section was called in the fall of 1993 to provide users and developers a forum to
discuss their views on the current status of mission analysis software, and to suggest possible
courses of action.

The special section meeting, was well attended, and it soon became clear that there was a ground
swell of support to resolve a number of problems. Mceeting members identified six main topics to
addiess including: software standards, organizing. known software tools, introducing modern
computer praphics techniques, improving use and maintenance of modern  computers  and
networks, coordinating related software efforts to maximize shared benefits, and finally, how to
obtain institutional support to build a greatly nuproved multi-mission software system.  lLeaders
were selected (o represent cach of the six arcas, and a series of panel discussion meetings were
held over the next several weeks to discuss issues and form recommendations for a plenary
session. Line managers made a strategic decision not to take part in the panel group activities, m
order to avoid dominating, discussion or discouraging a frank exchange of views.

A foHow up scection meeting was scheduled by the section manager for the panel groups to report
their findings, and make recommendations.  Ultimately, all recommendations were aceepted in
principal, inchading the recommendation 1o yeorganize  the section (oo create o proup o




consolidate related software activities. Although (he final recommendations were very close to
those of the few people who instigated this distributed effort, significant value was added by
involving a large number of concerned people. In the end, users, developers, and managers had a
shared vision of what should be done, and how to proceed.

After forming the new group, carly benefits were realized as members gained greater awareness of
related  activities, and how tasks could be coordinated to reduce unnecessary  duplication.
Howcever, there was still no defined architecture for the desired mission analysis system, nor were
there dedicated resources (o create one. In order o devise a workable plan, developers realized
the need to cevaluate the section's current software inventory, and to identify the missing
components. This information could then be used as a starting point to define the requirements,
which would then be modified based on the mputs of experienced mission analysts. The Mission
Design section's burden account and  JPL's Project Design Center (PDC, funded by the
laboratory's internal burden structure) provided a small amount of funds in fiscal 1995 to carry
out this survey effort.

Mission design personnet conducted the survey, and the results were discussed in joint steering,
group mecetings involving users, project representatives, developers, and managers.  Participants
discussed the status of current tools, and how the system could be improved.  Fventally, the
tcams reached consensus on classifying existing applications in one of three categories: "core”
capabilitics, utilitics and mostly redundant programs that could be made into library functions or
included as options in a core program, and a hist of programs to ignore, and no longer track.
Twenty programs qualificd m the "core” category. This did not necessarily mean that these were
the programs 1o keep, or that they even existed in the desired state; rather that the programs
represented the kind of capabilitics desired. Another sixteen programs fell into the utility or
mostly redundant category, and the steering, group classified roughly another 200 programs to no
longer consider, since they were either too mission specific, or obsolete. At the time of the survey,
only a handful of the programs in any of the categories were funded for development or
maintenance at any level.

During the summer of 1995, MGSO issued it's annual call for continnous improvement proposals.
Using the results of the smivey as a starting, point, the steering group reconvened  to - develop
proposals to begin implementing a new mission analysis architecture, and to satisfy the specific
objectives of the proposal puidelines. Three proposals emerged, reflecting the steering group
prioritics. The proposal objectives were to: develop new software to antomate the production of
stundard trajectory products; create a three dimensional mission plan visualization capability; and
(o integrate mission analysis software mto a synergistic system. Performance  objectives were
scoped to it within budgcetary  puidelines, and specific references were made to coordinating,
proposal efforts with other JP1, sections, divisions, and external organizations such as Purduc
University, the University of Minnesota, and Lewis Rescarch Center. Developers,  project
managers, users and line managers discussed and iterated the proposal objectives, and fetters of
endorsement from the involved partics were attached to the final proposals.

Ultimately, all three proposals were selected and funded for fiscal year 1996, which was especially
remarkable since no mission analysis proposals had cver been selected in prior years. The Project
Design Center also agreed to provide considerable funds to help fill in the gaps of the more
specific MGSO proposals. Finally, the mission analysis software effort was funded to implement
the plans developed in conjunction with their customers. The remainder of this paper describes
the architecture that has emerged, reports the status of ongoing efforts, benefits realized, and plans
for future cfforts.

) ITINING K Y MISSION ANALYSIS FUNCTIONS
The first major step in defining an architecture was to clearly establish the major functions of
mainstream mission analysis software, as graphically illustrated in Figure 1. The first column
represents trajectory generation functions, where ission designers develop a fight path to satisfy
mission objectives. The second column represents analysis to determine the timing of various
events such as maneuvers, science sequences, solar occnltations, and down link view periods, and
the third column is used 1o perform general peometie caleulations.
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Iigure 1: The mission analysis process can be diagrammed as a series of iterative refinements,
suggesting a hierarchical, modular structure of trajeciory gencration, cvents, and geomeltric
calculation.

The Cassini mission to SalUlp exercises MUch of this capability, so it will be used as an example of
how the functions arc related. A designer may beginby examining launch/artival contours
commonly referred 1o a s "pork chop™ plots to find minimum cnergy transfers from | iarth to
Saturn. After determining that a direct trajectory to Saturn requires an unacceptably high launch
energy, the analyst may consider using onc o1 more gravity assistes to reduce the propulsive
requirements. 1 .aunch energy contours to other planets or multi-year 1 ‘arth phasing orbits can be
examined to search foralternate OPP ortunitics.  After determining (hat a multiple gravity assist
trajectory to Saturn Might exist, the analyst might use. a conic trajectory ©PUMI zation pr(;gram to
test the hypothesis. In this Gist., the trajectory involves launch from 1 farth, two Venus ly b VS,
another arth flyby, a Jupiter flyby, andthenentry into mbit around Saturn.  The simple conic
program requires only a rudimentary initial estimate of the times of the planctary flybysinorder
to optimize a trajectory to minimize the total mission Av.

Once a candidate orbitis found, the analyst can further optimize the trajectory subject to a varicty
of mission constraints such as launch period requireinents, Minimum fiyby altitudes, and many
Others. 1 ‘inally, the trajectory can be refined using more sophisticated, fullyintegrated
acceleration mode.]s (n-body gravitational attraction, higher order gravity harmonics, solar
radiation pressure, atmospheric drag models).  Ultimately, a viable flight path to Saturn can be
found.

After the spacecraft arrives at Saturn, it enters an orbit that will allow many flybys of Titan and the
other Saturnian moons. A conic PYOEIAM s used to scarch for natural targets of opportunity, and
adjust satellite flyby parameters to allow multiple gravity assists to steer the spacecraft towards its
nexttarget while. minimizing the total Av necessary to accomplish the mission  Many possible
satellite (our scenarios exist, and options are chosen to satisfy science goals, as well as spacecraft
and mission operations constraints. hese constraints are analyzed using software represented by
the Timing / Events column, and the Geometry Calculations column — After the tour is sclected, it
too,” canbe optimized using the fully integrated trajectory optimizer. At any pointin the analysis,




pre-determined constraints or unforeseen circumstances may require the analyst to recycle  he
entire effort, and iterate the whole process many times until a satisfactory solution is found.

RI-ENGINEERING PIHEOSOPHY ANI CONSTRAINTS

STAN YARD

ING NTHREFACES

One of the desired features of the new mission analysis system is scamless exchange of relevant
information between related programs. One approach would be to simply write "glue functions”,
or specific utility programs to take the output of program "A", massage it into the desired format,
and then write it out as an input file to be read by program "B". Due to the iterative nature of the
mission analysis process, it might also be necessary to create yet another utility to transfer
information from B back to A. Given a sufficiently small number of programs, this scenario
might be workable. Yowever, as Figure 2 demonstrates, the number of two way intcilaces
increases rapidly as additional programs arc included in the system. In fact, the number of
connections scales by (n(n-1)/2) where "n" is the number of prograns in the system. Because of
this, a standardized data interface was developed based on the JP1)s Navigation Ancillary
Information Yacility "SPICE" kernel capabilities.  SPICE is an acronym where each letter
represents a significant, unique capability. In the scope of this discussion, the mission analysis
system chose to use the "S" kernel (reads and writes SPK files) to represent the trajectorics of
spaceciaft, planets, and satellites, and the "1 kernel to organize relevant events. One of the
benefits of the SPK system is that the orbit information can represent a simple conic, or an
integrated trajectory with many flybys. FPrograms that use this capability can then create or read
trajectory information, and issucs such as changing central bodies for spacccraft orbits are
handled automatically. Using this scheme, the number of two way interfaces is simply "n", so 1t is
far casicr to maintain an integrated software set.
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Tnis schemsrequires (n*(n-1))/2 lwo way connections. 15 1 his scheme requires n two way onnections = 6

gure 2: Standardizing trajectory and timing data in o standard Jormat simplifies interfuces.
MODULARIZING MISSION ANA] .YSIS II'UNC'1'10NS

] lamination of the software that remained on the supported list after selection revealed
sig nificant overlap of key functions. Figure 3 shows six unique programs that were developed to
numerically integrate trajectorics, given a specific mission scenario. in some cases, a program has
a unique physical model lacking in othe r Progr ams.  Lior example, CAESAR had a comet
outgassing pressure model touse while orbiting a comet, the Planctary Observer Program (POY)
set was customized to model terrestrial planets using higher order gravity harmonics, while
LLUNTRI and the Goddard program SWINGBY included gravitational attraction of the Farth,
moon, andsun. The only program funded for development or maintenance at any level was
1‘AST which has been a core program for nearly 25 ycars. Between the time the group formed to
consolidate c. fforts and the proposals were funded, the CATO program (Computer Algorithm for
Trajectory Optimization) was being developed to optimize fully integrated trajectories involving
multiple flybys. CATO was CIC.VCIOPCCI for Cassini to replace the MOSES multi-conic trajectory
optimization program set used by Galileo for the satellitc’toul at Jupiter.

Before: Trajectory Integraion Programs ATter D Trajec tory Integration Modules
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Figure 3: A single general purpose module replaces overlapping  functionali™ ty, yesulting in lo wer
nmaintenance costs.

Initially, developers tried to adapt FAST to be  the. trajectory integration module used in CATO,
but this plan was abandoned after considerable ¢ ffort, since the dc.sired fcatures in FAST were
distribute.d all through the complex program. I'herefore, a new trajectory integration module
called GRIST was written in object oriented 1 ‘ORTRAN 90 to be both astand alone. trajectory
nteg ration program, and a module to be called by other programs.  Since GRIST was wiitten to
be useful to any class of mission, it was designed (o integrate trajectorics modeling an arbitrary
number of gravitating bodies (any combination of sun, 1 tarth, moon, plancts and their satellites,
comets and asteroids), gravity harmonics, solar \ adiation pressure, nine diffcrent atmospheric
models, andother acceleration models as desired. Once GRIST was desig ned to solve the gener gl
problem, it represented a superset of the capabilities of the progr ams it replaced. If a desired
aceelerationmodel is missing in Grist, such as a specific comet outg assing model fi om CATSAR,
itcanbe included as another term on the right hind side of the differential equation of motion.




The remaining mission analysis p rograms have other similaritics, In addition to trajectory
mmtepration. Most programs calculate geometric quantit ics to help design trajectorics, determine
instrament coverage ot telecommu nication links to a g round station, or some other purpose. 11l
existing stand alone programs, a large parcentage of’ the code is typically devoted to keeping
track of complicated data , vectors, and coordinate systems (o make these calculations. Anotlier
function common to many programs is the need to scarch for and keep track of eventsthat occur,
such as propulsive mancuvers, science viewing oppor tunitics, and entry and cxit o f solar
occultation. In some cases, these events are unigue to the mission or arc. specified by the user, but
many cvents are calculated based on a geometric quantity (such as occultations and ground
station view periods). Realizi ng this, two more modules were identified as core features, an cevents
finding module (EVENTS), and a gecometry calculation module (GPOST - General purpose post
processor). 111 both cases, the modules were designed to be used either as stand alone programs
oras parl of another program.

Yigure 4 shows a topy level view of how the picces fit together.  The left-most block represents a
generic mission analysis program, which performs a trajectory design function.  Using satellite
tour design as an example, the application will model a conic obit around a planet, and perform
calculations to target multiple flybys of the planct's satelli(es. As the program is uscd to build up
a tour, events such as maneuvers and satellitcencounter times begin (o accumulate.  Geometric
quantities arc also calculated, and may be relatedto viewing geometry of the science instruments,
for example. This information helps the mission analyst design the tour to mect the mission
objectives. Ultimately, the program will produce some. sort of graphical or tabular output,

Geometry - GPOST

&

Figure 4: The new mission analysis software architecture shows the inter-relationship and reuse of
conmon modules.

After ranning the. sate.]litc tour program, the custom events I'elated to the tourare writtenoutina
standardized format to be read by other applications downstream. In the diagram, the custom
events and the. stand ardized trajectory file. are used as inputs to the 1'VENTS module, which can
be used to caleulate any number of user specificd occurrences such as flax tube crossings. The
E VENTS program would then produce a merged cvents file. containing the information from the
towr design program, and the unique occurrencesrequested. This information couldthenbe
passed to GPOST to calculate. standard trajectory products such as ranges and range rates to Harth
ground stations for telecommunications analysis, and the range to the. sunfor power and thermal
considerations. Finally, the information can be plotted or tabulated in a specified format. The
main message contained in Figure 4 is that most mission analysis applications have much in
common, and that by identifying, the majormodulsanddesigning themina general, multi -
mission fashion, they can bereadily used to construct new applications while minimi zing
duplication of ¢ ffort, and preserv ing stand ardized interfaces for a more synergistic system.

COST SAVINGS

The mostimportant consideration in re-engincering JP's mission analysis software has been to
increase the productivity of the mission analyst, thereby saving projects considerable time and
moncy. liqually important, however, is the cost of new developments, and the projected cost of




maintaining the new system. By climinating unnccessary redundancy and mission specific
implementations, there are far fewer programs to maintain, and also ‘fg\”\'(tlﬁilglﬁx;a&lj]_i ff’}" the users
to lcarn. v oty

The CATO program is a good cxample of cost savings realized from the new architecture,
originally, CATO was only intended to rc.place the MOSHS software sect for optimizing satellite
tours around outer plancts.  The PLLATO software set was another large package, but it was
intended to optimize trajectories in heliocentric space with planctary flybys. , Conceptually, the
two systems were very similar, so a decision was made to make CA’] '() as genera in nature as
reasonably possible., and thereby replace both sets. in cssence, the algorithms were formulated
without making any assumptions about what bodics would be involved, whether thely were plancts,
~.satellites, astcroids, comets, or any combination.  Ultimately, the CA’] *() program was delivered to
the Cassini project with only aninsignificant addition of cost and schedule.

"After delivery, several projects re.slim.d significant cost savings duc to the general purposc nature

of CATO. Initially, the Cassini project only intended 1o use CATO for satellite tour design, but
their firstuse was to optimize. the complexinterplanctary 1 {arth-Venus-Venus-Harth-Jupi -
Saturn trajectory and produce the target specification in farless time than planned. Although
developed as a Cassini product, the Galileo mission used CATO to perform an end to end
optimization of the tour at Jupiter, which was not possible with carlier software. Several small
mission studics requiring complex trajectorics in the Harth-moon-sun system were able to reduce
their propulsive requirements by using CATO to optimize their trajectories. And finally, the New

‘- Millennium 1Deep Space 1mission using solar electric ]]n'dpil]Si()n"(ST'll’) to math an asteroid

successfully used CA”] *() to model the low thrust burns and optimize the trajectory to the target.
The New Millennium program will devote. some funds to augment the CATO effort 1o make it
casicr to use for SEP analysis, but there are large savings realized by starting with a general
purpose, multi -mission tool.

CONCILUSIONS

After decades of relative isolation], JPL fli ght projects and studics alike are beginning to reap
benefits from the new partnership formed between mission analysis software users, developers,
managers, and institutional sponsors. By coordinating a large number of tasks, it has become
clear that many mission specific app lications have much more in common than initially thoug ht.
Modern computer platforins, networks and language features have enabled a sig nificantre -
engincering of the mission analysis infrastructure, while climinating unnccessary redundancy and
cumbersome interfaces.  Benefits include increased productivity, multi-mission applicability,
crror reduction, and reduced maintenance COStS.

M ore waorkneedsto be done, however, as the new system is integrated both internally, and with
the software tools of related disc iplines. Although most of the major analytical components arc
nearing completion, details of the user intro face and interprocess communications are stillunder
development. Also, plans are currently being made to integrate the best features of mission
analysis software with [hose of the navig ation system,



